Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: evidence from dopamine receptor and neuropeptide immunostaining.
نویسندگان
چکیده
UNLABELLED The flow of cortical information through the basal ganglia occurs through the so-called 'direct pathway' and 'indirect pathways'. The object of the present work was to attempt to determine whether spiny neurons in the neostriatum that give rise to the direct pathway (i.e. the striatonigral/entopeduncular pathway) and those giving rise to the indirect pathways (i.e. striatopallidal pathway) are synaptically interconnected. The approach was to carry out double immunocytochemistry at the electron microscopic level using antibodies against peptides or dopamine receptor subtypes that are selectively associated with the neurons that give rise to the direct (substance P or D1 receptors) and indirect pathways (enkephalin or D2 receptors). Sections of perfuse-fixed rat neostriatum were immunostained to reveal both substance P immunoreactivity and D2 receptor immunoreactivity or enkephalin and D1 receptor immunoreactivity, respectively. Double peroxidase methods were employed using different chromogens that were distinguishable at both the light and electron microscopic levels. In the electron microscope substance P-immunoreactive terminals were seen in synaptic contact with dendritic structures that displayed immunoreactivity for D2 receptor. Similarly, enkephalin-immunoreactive terminals were seen in synaptic contact with D1-immunoreactive dendritic structures. Thus, axon collaterals of neurons giving rise to the direct pathway form synaptic contacts with neurons that give rise to the indirect pathway and axon collaterals of neurons giving rise to the indirect pathway form synaptic contact with neurons that give rise to the direct pathway. These results indicate that the two pathways of information flow through the basal ganglia are synaptically linked at the level of the neostriatum. KEYWORDS spiny neurons, direct pathway,indirect pathways, rat neostriatum
منابع مشابه
Localization of dopamine D1 and D2 receptors in the rat neostriatum: synaptic interaction with glutamate- and GABA-containing axonal terminals.
In order to determine the synaptic interactions between the glutamate- and GABA-containing axonal terminals and the two subpopulations of medium spiny neurons in the rat neostriatum, double immunocytochemistry was performed. Sections of perfuse-fixed rats were used. Immunoreactivity for dopamine D1 and D2 receptors was used as a marker for the two subpopulations of spiny neurons that give rise ...
متن کاملActions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملActions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملPresynaptic modulation by somatostatin in the rat neostriatum is altered in a model of parkinsonism.
Somatostatin (SST) is a peptide synthesized and released by a class of neostriatal local GABAergic interneurons, which, to some extent, are in charge of the feedforward inhibitory circuit. Spiny projection neurons (SPNs) make synapses with each other via their local axon collaterals, shaping the feedback inhibitory circuit. Both inhibitory circuits, feedforward and feedback, are related through...
متن کاملEnhanced excitatory synaptic transmission in spiny neurons of rat striatum after unilateral dopamine denervation.
The synaptic transmission and intrinsic membrane properties of spiny neurons in rat neostriatum were studied after unilateral dopamine depletion using in vivo intracellular recording and staining techniques. Two to four weeks after dopamine denervation, the spontaneous firing rate of spiny neurons increased and the spontaneous membrane potential fluctuation stayed at a more depolarized state fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 8 5 شماره
صفحات -
تاریخ انتشار 1996